From Identical Particles to Frictionless Flow

John Chalker

Superfluids and superconductors

Liquid helium

Electrons in (some) metals

Dilute atomic gases

Discovery of Superconductivity

1913

Nobel Prize in Physics

"During an hour the current was observed not to decrease appreciably"

Not Spotting Superfluidity

Discovery of Superfluidity

P. Kapitza 1937 Nobel Prize in Physics 1978

NATURE JAN. 8, 1938

"From the measurements we can conclude that the viscosity of helium II is at least 1,500 times smaller than that of helium I The present limit^{*} is perhaps sufficient to suggest, by analogy with supraconductors, that the helium ... enters a special state that might be called a 'superfluid'."

P. KAPITZA.

Institute for Physical Problems, Academy of Sciences, Moscow. Dec. 3.

 * By 1965: viscosity $\leq 10^{11} \times$ smaller

Quantum basics

Wavefunction $\Psi(\mathbf{r}) \equiv |\Psi(\mathbf{r})| e^{i\varphi(\mathbf{r})}$

probability density $|\Psi({f r})|^2$

de Broglie: $\Psi({f r})\propto e^{i{f k}\cdot{f r}}$ for momentum $\hbar{f k}$

Slow particles have long wavelengths

high temperature:wavelength \ll particle spacingdegeneracy temp:wavelength \sim particle spacing

Quantum statistics

energy

Quantum statistics

Quantum statistics

Bose-Einstein condensation

energy

F. London (1938)

Bose-Einstein condensation

energy

Velocity distributions vs temperature

W. Ketterle et al (1995)

Nobel Prize in Physics 2001: E. Cornell, W. Ketterle and C Weimann.

Superfluidity in Bose liquids

Excitations in superfluids

Give energy to single atom?

Requires quantum wavelength *«* interatomic space

- high energy, so excluded at low temperature

Excitations in superfluids

Share energy between many atoms?

Use collective wavefunction $\Psi({f r},t)$ to describe excitation

What's the dynamics of $\Psi({f r},t)$?

Start from Schrödinger eqn

$$i\hbar \frac{\mathrm{d}\Psi(\mathbf{r},t)}{\mathrm{d}t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{r},t) + V(\mathbf{r})\Psi(\mathbf{r},t)$$

and allow for interactions between particles

$$V(\mathbf{r}) \rightarrow V(\mathbf{r}) + \int \mathrm{d}\mathbf{r}' U(\mathbf{r} - \mathbf{r}') |\Psi(\mathbf{r}')|^2$$

Excitations in superfluids

Share energy between many atoms?

Use collective wavefunction $\Psi({f r},t)$ to describe excitation

What's the dynamics of $\Psi({f r},t)$?

Outcome:

- Excitations are small-amplitude waves in $\Psi({f r},t)$
- \bullet Excitation energy $\varepsilon(k)$ vs wavevector k

Viscosity from excitations?

Consider flow in rest frame of fluid

Can pipe transfer momentum to fluid by making excitation?

Conservation laws

Energy: $\frac{1}{2}M\mathbf{v}^2 = \frac{1}{2}M(\mathbf{v} - \Delta \mathbf{v})^2 + \hbar\omega(k)$ so $M\mathbf{v} \cdot \Delta \mathbf{v} = \hbar\omega(k)$ Momentum: $M\mathbf{v} = M(\mathbf{v} - \Delta \mathbf{v}) + \hbar \mathbf{k}$ so $M\Delta \mathbf{v} = \hbar \mathbf{k}$ Together $\mathbf{v} \cdot \mathbf{k} = \omega(k)$ or $||\mathbf{v}| \ge \omega(k)/k|$

Landau critical velocity

Dissipation requires $|\mathbf{v}| \geq \omega(k)/k$ Is this possible?

L. D. Landau (1941) Nobel Prize in Physics 1962

Landau critical velocity

Dissipation requires $|\mathbf{v}| \geq \omega(k)/k$ Is this possible?

Free particle dispersion

$$\hbar\omega(k) = \frac{\hbar^2 k^2}{2m}$$
- yes!

Sound wave dispersion

$$\omega(k) = ck$$

— for slow flow (v < c) no!

Landau critical velocity

Dissipation requires $|\mathbf{v}| \geq \omega(k)/k$ Is condition satisfied?

Dispersion from experiment

Superfluid flow

Key idea: describe whole system with wavefunction $\Psi({\bf r})$

Interpret $|\Psi({f r})|^2$ as superfluid density

Meaning of phase $\varphi(\mathbf{r})$ of $\Psi(\mathbf{r})$?

Recall de Broglie:

 $\Psi({f r}) \propto e^{i{f k}\cdot{f r}}$ for momentum $\,\hbar{f k}$

Superfluid velocity
$$\mathbf{v} = \frac{\hbar}{m} \nabla \varphi(\mathbf{r})$$

Superfluid velocity $\mathbf{v} = \frac{\hbar}{m} \nabla \varphi(\mathbf{r})$

Flow in a channel

- superfluid phase gradient along length

Superfluid velocity $\mathbf{v} = \frac{\hbar}{m} \nabla \varphi(\mathbf{r})$

Flow around annulus

 superfluid phase gradient around circumference

$$\oint \nabla \varphi(\mathbf{r}) \cdot d\mathbf{r} = 2\pi \times \text{integer}$$

 \Rightarrow quantised circulation!

Superfluid velocity $\mathbf{v} = \frac{\hbar}{m} \nabla \varphi(\mathbf{r})$

Superfluid in a rotating bucket

Rotation at fixed angular velocity impossible

$$\oint \nabla \varphi(\mathbf{r}) \cdot d\mathbf{r} = 2\pi \times \text{integer}$$

Superfluid velocity $\mathbf{v} = \frac{\hbar}{m} \nabla \varphi(\mathbf{r})$

Superfluid in a rotating bucket

Rotation at fixed angular velocity impossible

Rotating superfluid threaded by quantised vortices

Superfluid velocity $\mathbf{v} = \frac{\hbar}{m} \nabla \varphi(\mathbf{r})$

Superfluid in a rotating bucket

Rotation at fixed

angular velocity impossible

Rotating superfluid threaded by quantised vortices

Yarmchuk, Gordon and Packard (1979) Container: 2 mm. Rotation rate: \sim 0.5 s $^{-1}$

Summary

Coherence of many atoms

 $\Psi(\mathbf{r})$ becomes macroscopic variable

Dissipationless flow

Quantised vortices